Atmos. Chem. Phys. Discuss., 13, 14545–14579, 2013 www.atmos-chem-phys-discuss.net/13/14545/2013/ doi:10.5194/acpd-13-14545-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Estimation of nocturnal ²²²Rn soil fluxes over Russia from TROICA measurements

E. V. Berezina¹, N. F. Elansky¹, K. B. Moiseenko¹, I. B. Belikov¹, R. A. Shumsky¹, A. N. Safronov¹, and C. A. M. Brenninkmeijer²

¹A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

²Max-Planck-Institut für Chemie, Air Chemistry Division, Mainz, Germany

Received: 13 May 2013 - Accepted: 16 May 2013 - Published: 4 June 2013

Correspondence to: E. V. Berezina (e_berezina_83@mail.ru), K. B. Moeseyenko (konst.dvina@gmail.com), and N. F. Elansky (n.f.elansky@mail.ru)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

In TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) experiments (1999–2008) simultaneous observations of near surface ²²²Rn concentrations and atmospheric boundary layer thermal structure were performed across North Eurasia including the central part of Russia, South Siberia and the Far East. The data on ²²²Rn and temperature vertical distribution are used to estimate regional scale ²²²Rn soil fluxes basing on calculations of nocturnal ²²²Rn accumulation rates in the surface layer under inversion conditions. An effect of seasonal soil thawing on 2–4 times surface ²²²Rn concentration increase from summer 1999 to autumn 2005 is observed. The ²²²Rn flux estimated from our experiments varies over Russia from 0.01 to 0.15 Bqm⁻² s⁻¹ with the highest ²²²Rn fluxes being derived in the mountain regions of South Siberia and the Far East.

1 Introduction

The radioactive gas radon (²²²Rn) is one of the decay products of uranium-238 (²³⁸U), the most abundant uranium isotope in the Earth's crust. The main source of ²²²Rn in 15 the atmosphere is the soil and its flux depends on the soil type and properties; its only sink is radioactive decay.²²²Rn is a chemically inert gas with the half-life of 3.82 days. These features allow ²²²Rn to be a useful tracer to study air transport (Prospero et al., 1970; Wilkniss et al., 1974, Dörr et al., 1983; Lee and Larsen, 1997) as well as to derive emissions of some atmospheric gases: CH_4 and CO_2 (Dörr et al., 1983; Gaudry 20 et al., 1990, Levin et al., 1999; Moriizumi et al., 1996; Schmidt et al., 1996; Duenas et al., 1999; Biraud at al., 2000; Hirsch, 2007), N₂O (Biraud at al., 2000; Conen et al., 2002; Messager et al., 2008; Corazza et al., 2011), CO (Messager et al., 2008), H₂ (Yver et al., 2009). ²²²Rn is also commonly used for validating transport in climate models (Rasch, 2000; Szegvary et al., 2007), with ²²²Rn flux being generally assumed 25 to be spatially uniform with a rate of $1 \operatorname{atom} \operatorname{cm}^{-2} \operatorname{s}^{-1} (0.021 \operatorname{Bqm}^{-2} \operatorname{s}^{-1})$ from ice-free

land surfaces and zero from oceans (Conen and Robertson, 2002). However, ²²²Rn flux varies widely in space and in time. Therefore, the information about spatial and temporal ²²²Rn flux variations over a variety of conditions is very important for correct estimation of spatial distribution and strength of natural and anthropogenic sources and sinks of greenhouse gases based on the observations of their near-surface concentrations.

5

10

²²²Rn flux measurements were carried out in different regions of the world (Duenas et al., 1999; Turekian et al., 1977; Somashekarappa et al., 1996; Szegvary et al., 2007; Taguchi et al., 2011) including Russia (Milin et al., 1967; Kirichenko, 1970; Yakovleva, 2003; Tarasov, 2008). However, the data reported for Russia are not sufficient to form a clear picture of ²²²Rn flux variations over such a vast territory.

During the last fifteen years the substantial data on ²²²Rn spatial variability has been obtained with the use of a mobile carriage laboratory during international TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) experiments

¹⁵ along the Trans-Siberian Railroad from Moscow to Vladivistok (Elansky et al., 2009). These observations allow studying the large scale variability of near-surface atmospheric composition across extensive areas of the continent with essentially different geological, geographical and climatic features.

Preliminary results of ²²²Rn flux estimation from TROICA experiments are given in
 Berezina and Elansky (2009) (hereafter BE09). The method used in BE09 to calculate
 ²⁰²Rn soil flux implies a uniform vertical ²²²Rn distribution in a stable 100 m height surface layer based on the observations of ²²²Rn vertical distribution in stable atmospheric conditions presented in some investigations (Jacobi and Andre, 1963; Servant, 1966; Kataoka et al., 1998). Although such a simplification seems to be physically reasonable when studying particular events, it could lead to significant and poorly controlled errors in ²²²Rn emission calculations when considering such a long-distance route with strongly variable conditions affecting ²²²Rn fluxes.

In this paper we present a more elaborate procedure to assess regional-scale ²²²Rn fluxes based on simultaneous observations of surface ²²²Rn and temperature vertical

distribution in the atmospheric boundary layer (ABL) during six TROICA experiments in 1999–2008. The observational data along with the description of a simple numerical procedure to calculate vertical ²²²Rn distribution within the nocturnal stable ABL are presented in Sect. 2. The observed regional-scale surface ²²²Rn variability and derived ²²²Rn fluxes are discussed in Sect. 3. Finally, the general conclusions on the results of this study are formulated in Sect. 4.

2 Data and methodology

The TROICA observational experiments have been carried out on a regularly basis since 1995 (Elansky et al., 2009) (Table 1). In this study we use the data from six experiments in which the simultaneous measurements of ²²²Rn and vertical temperature profiles in ABL were performed. The complete description of the measurement technique, data quality assessment and the dataset obtained from the measurements from the railroad mobile laboratory are presented in Elansky et al. (2009).

The route of the TROICA experiments overlaid on the radon risk map of Russia (Maximovsky et. al., 1996) (see discussion below in Sect. 3.1.1) is shown in Fig. 1. The total length of the route from Moscow to Vladivostok (9288 km) is covered for approximately 6 days, so the total duration of a single campaign (forward and return paths) is about two weeks. The strength of ²²²Rn natural sources varies strongly along the route due to essentially different geological settings over the territory crossed by
 the railway. The significant part of the route is located in the mountain areas of the Southern Urals and Southern Siberia (Central and Eastern Siberia) where the ²²²Rn surface fluxes is known to be elevated (see Fig. 1). As the railway goes along the most

densely populated and industrial regions of the European part of Russia and Southern Siberia, an anthropogenic origin of the measured ²²²Rn concentrations can also be
 ²⁵ important at some parts of the Trans-Siberian Railroad such as the central region of European Russia and the Southern Urals. We expect, however, that the relative effect of this signal is substantially diminished when inverting the radon flux values since the

most of the data in each radon accumulation event is obtained either upwind of possible anthropogenic sources or in low wind synoptic conditions, so the characteristic time of advection from such sources is comparable with the ²²²Rn life time.

2.1 ²²²Rn measurement technique

Surface ²²²Rn concentration was measured by the analyzer of ²²²Rn decay products LLRDM (Low Level Radon Daughters Measurement) produced by Tracer Lab (Germany). The air intake of the instrument is placed at the front side of the carriage roof at a 4 m height a.g.l. The measurement method is to determine ²²²Rn gas concentration via its short-lived aerosol-attached daughter activity (²¹⁸Po, t_{1/2} = 3.05 min; ²¹⁴Pb, t_{1/2} = 26.8 min; ²¹⁴Bi, t_{1/2} = 19.7 min) (Martz et al., 1969; Stockburger and Sittkus, 1966) collected the moving a quartz fiber filter ribbon of the instrument. A special technique for the measurement data correction is implemented when any deviation from the radioactive equilibrium occurs. The measurement range of the instrument is 0.1–100 Bqm⁻³. The data were archived as 10 min averages with an absolute mea-15 surement error to be about 15 %.

2.2 Temperature profiles measurements

Vertical temperature profiles were measured with the use of the MTP-5 microwave temperature profiler (ATTEX, Russia) from the level of the carriage roof (4 ma.g.l.) up to the 600 m height (the in-situ outdoor temperature measurements at 4 ma.g.l. were also conducted independently by standard meteorological thermometer). The MTP-5 measures the atmospheric thermal radiation in the center of the molecular-oxygen absorption band at around 56 GHz at different zenith angles. The brightness temperature is then retrieved from the measurements (Kadygrov and Pick, 1998) to obtain a vertical temperature profile in a range 0–600 ma.g.l. with 50 m vertical resolution. To minimize

the effect of the electric locomotive and the short-term influence of different objects located near the railway on the instrument operation, zenith angle scanning was carried

out at a 10° angle relative to the direction of the motion. The resolution of the retrieved temperature data is 5 min and the overall instrument accuracy is about 0.2°C. Some relevant parameters of the observed near-surface inversions (outside the large towns and their suburbs) are summarized in Tables 2 and 4.

5 2.3 Theoretical considerations

10

In present study we use a simple numerical procedure to calculate ²²²Rn accumulation rates in the stable nocturnal ABL for a number of specific accumulation events observed during the TROICA observations. For each event, we define t_1 – the time of the beginning of surface inversion formation and t_2 – the time of the observed maximum ²²²Rn concentration, with the latter corresponding commonly to the time when the inversion starts to collapse. The time of a particular event varies from 3 to 13 h. Since the typical movement velocity of the mobile laboratory amounts to 50–70 kmh⁻¹, a characteristic spatial scale *L* for an individual event is within the range of 150–1000 km. Further, it seems to be appropriate to use the following major assumptions:

- 15 **1.** During each event ²²²Rn surface flux can be set to some constant value representing space and time averaged ²²²Rn emission rate over *L*;
 - Since the most part of the radon daughters are attached to submicron particles having a settling velocity less than 1 mh⁻¹, radon removal due to sedimentation can be neglected;
- 3. At the time of inversion onset t_1 the surface ²²²Rn concentration field is assumed to be spatially homogeneous over *L*;
 - 4. Radon vertical transport due to diffusion is limited by the height of the inversion layer;

5. Any changes in local ²²²Rn concentrations in the near-surface layer below the inversion due to wind advection can be neglected compared to its vertical transport by eddy diffusivity.

The latter assumption is substantiated by the fact that during the observed strong surface temperature inversions horizontal air movement in ABL is generally very weak, so we do not consider air advection from any particular anthropogenic ²²²Rn source and assume the main origin of ²²²Rn under the inversion layer to be its soil flux. Hence, temporal evolution of ²²²Rn vertical distribution under the inversion layer of the height *H* allows us to calculate the accumulation rate *Q* [Bqs⁻¹] for its total amount below *H*,
which gives an estimate for ²²²Rn soil flux as far as the assumptions (1 to 5) hold. In this case, the general problem of atmospheric ²²²Rn vertical and temporal variations reduces to the solution of a non-stationary diffusion equation:

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left(K(z) \frac{\partial c}{\partial z} \right) - \lambda c, \qquad z_0 < z < H(t), \qquad t \in [t_1, t_2] \tag{1}$$

- ¹⁵ where *c* [Bqm⁻³] is ²²²Rn concentration, *K* [m² s⁻¹] is the height-dependent ²²²Rn diffusivity, λ (= 2.08 × 10⁻⁶ s⁻¹) is the radon decay constant, z_0 (= 4 ma.g.l.) is the time independent measurement height at which $c_0 \equiv c$ ($z_0, t \ge t_1$) is the known function represented by the actually measured ²²²Rn concentrations. The appropriate initial and boundary conditions for Eq. (1) are:
- 20 $C(z,t_1) = C_0(t_1),$ $(z_0 \le z \le H_{t=t_1})$ (2) $C(z_0,t) = C_0(t), \ \left(\frac{\partial C}{\partial z}\right)_{z=H} = 0.$ $(t_1 < t < t_2)$ (3)

Thus, according to Eq. (2) at the start time t_1^{222} Rn concentration is equal to its value measured prior to the inversion formation and assumed to be uniformly distributed with height due to active daytime vertical mixing. A simple explicit time-forward second order 14551

space-centered scheme was used to solve Eqs. (1)–(3) on a 1-dimensional grid with $\Delta_z = 1 \text{ m}$ grid spacing between adjacent vertical levels and with 6 s time step to satisfy general stability requirements for a chosen K(z) profiles. Once vertical distribution of radon is known, the total ²²²Rn abundance *M* and accumulation rate *Q* within a layer $0 \le z \le H$ at a time t_i can be calculated by:

$$M(t_{i}) = \int_{0}^{H} c(t, z) dz = \sum_{j} c(z_{j}, t_{i}) \cdot \Delta_{z},$$

$$Q = \overline{(dM/dt)}^{t} \approx (M_{t-t_{0}} - M_{t-t_{1}})/(t_{2} - t_{1}),$$
(5)

where the summation is performed over the computational cells and a horizontal bar denotes time averaging.

In the case of strong inversion the diffusion coefficient K near the earth's surface is known to be very weak, yet being quite variable with z depending on the vertical variations of wind velocity and stability. Following to Cohen et al. (1972) we assume in the present study a linear dependence of K on z, with the upper-layer K being independent of height and in the surface layer below 100 m being given as

$$K(z) = K(z_1) \cdot z/z_1, \qquad (z < H)$$
 (6)

where $K(z_1)$ is some known diffusivity rate at a reference level. In our calculations the value of *H* is set to be constant and was chosen from numerical experiments to be so high (~ 600 m) that it does not affect at any appreciable rate the final estimates of radon fluxes. We derive a plausible range for warm-season $K(z_1)$ diffusivities along the TROICA route basing on the corresponding modal values at heights 50–100 m a.g.l. from NOAA ARL Archived Meteorology database (http://ready.arl.noaa. gov/READYamet.php). We chose K(z) profiles characteristic of two stability classes of ABL: $\Delta T_{100} > 4.0$ °C – extremely stable (G), and $\Delta T_{100} = 1.5-4.0$ °C – moderately stable

(F) according to the common classification of Pasquill (1961), where ΔT_{100} is a temperature change in the near-surface 100 m layer. Table 2 shows the surface temperature inversion characteristics from the TROICA dataset averaged for different seasons with the strongest positive temperature gradients observed in spring and autumn experiments (TROICA-8 and 9) owing to anticyclonic weather conditions over the most part of the route. Hence, the selected classes G and F cover completely the range of ΔT_{100} values observed during the TROICA experiments for nocturnal surface inversions. We apply

$$\mathcal{K}(z_1) = \begin{cases} 10 \,\mathrm{sm}^2 \,\mathrm{s}^{-1} \text{ for class G,} \\ 100 \,\mathrm{sm}^2 \,\mathrm{s}^{-1} \text{ for class F.} \end{cases} \quad z_1 = 1 \,\mathrm{m},$$

10

which are also in a good agreement with the results presented in Bezuglaya (1983) for Russian regions and with the vertical diffusivity profiles given by Jacobi and Andre (1963) (their curves WNW and IWN on Fig. 1) used in the relevant studies on ²²²Rn distribution (Beck and Gogolak, 1979; Moses et al., 1960) as well as with the average *K* values in a 90 m depth surface layer proposed in Hosler et al. (1983) for the F stability class. Since a particular value of the diffusivity rate has a first-order influence on the final estimates of ²²²Rn fluxes, two series of the calculations with $K(z_1)$ value given by Eq. (7) were carried out to assess a plausible range of radon soil fluxes for each observational episode.

20 **3** Results and discussion

3.1 Variations of surface ²²²Rn concentration over Russia

3.1.1 ²²²Rn spatial distribution

Figure 2 shows the spatial distribution of original 10 min mean ²²²Rn concentrations and 10th, 50th and 90th percentiles calculated for 100 km parts of the route.

(7)

For spring and autumn data only the 50th percentile values are considered because of a limited dataset for calculations. The figure also presents the altitude a.s.l. along the Trans-Siberian Railway to demonstrate an importance of terrain elevation in the observed radon distribution. For the regional-scale representation, we divided the Russian territory along the Trans-Siberian Railway into 6 regions according to their basic geological features: ETR, European territory of Russia (Moscow– Perm), Ural (Perm–Ekaterinburg), Western Siberia (Ekaterinburg–Novosibirsk), Central Siberia (Novosibirsk–Irkutsk), Eastern Siberia (Irkutsk–Belogorsk) and the Far East (Belogorsk–Vladivostok). One can see from the figure that significant variations of radon concentrations exist in each season even within geologically uniform areas. It should be noted, however, that simple examination of the displayed time series does

- not provide any information about the true geographical areas of enhanced radon fluxes, since the measured surface concentrations depend strongly on vertical exchange rate driven by ABL daily variations and hence can be strongly connected to
- the local observation time. The marked increase in radon concentrations seen at some parts of the route is found to be controlled by a night-time accumulation effect in temperature inversion conditions, which overrides the possible influence of other contributing factors. Some appropriate statistics on spatially averaged 1 h diurnal and daytime ²²²Rn concentrations for each region and the inversion characteristics averaged for the Rus-
- sian regions from the summer and autumn observations are shown in Tables 2 and 4, correspondingly (the spring measurements were excluded from consideration because of a lack of the data for spatial averaging). The table shows that in most cases the diurnal mean ²²²Rn concentrations are significantly higher for all seasons and regions than the daytime ones due to the night-time accumulation effect (discussed in detail in
- Sect. 3.1.2) However, there are some episodes (see Table 3) with high daytime mean radon concentrations in spring (European territory and Ural) and autumn (European territory and the Far East). Table 4 presents the inversion characteristics averaged for the Russian regions from the summer and autumn observations. Prolonged temperature inversions existed up to mid-day hours in these observational periods in the

regions under consideration (Tables 2 and 4) and could contribute to such high daytime radon concentrations. The limited number of the experiments performed in each season (see Table 1) does not allow us to filter out the night-time accumulation signal from the observational data completely. So, we describe here some large-scale features of spatial ²²²Rn distribution based on daytime statistics (listed in Table 3) rather than on diurnal means assuming the former be more representative for a background atmospheric radon levels over the continent.

5

According to Table 3, the highest daytime radon concentrations were observed in the Far East (12.4 and 7.3 Bqm⁻³ in autumn and summer on average, respectively)
and in Central Siberia (7.8 and 6.9 Bqm⁻³ in autumn and summer on average, respectively). According to the summer and spring experiments, low ²²²Rn concentrations, 2–7 Bqm⁻³, are typical for the ETR and West Siberian regions characterized by flat terrain with low absolute elevations. However, in the autumn 2005 experiment high ²²²Rn concentrations, up to 13 and 18 Bqm⁻³ in the ETR and Western Siberia, correspondingly, were observed (see Fig. 2 and Table 3). The probable reason of this radon increase is a cumulative effect of two factors: steady anticyclonic conditions with strong and prolonged (up to 16 h) surface temperature inversions and the existence of significant regional anthropogenic sources.

On the whole, ²²²Rn concentrations are higher in autumn comparing to other seasons in all Russian regions (see Fig. 2 and Table 5). The factors which can determine such seasonal ²²²Rn variations will be discussed further in the Sects. 3.1.3 and 3.1.4.

Table 3 shows that there exists some negative correlation in near-surface radon abundances between the western (ETR – Western Siberia) and eastern (Central and Eastern Siberia) parts of the continental areas of North Eurasia. This feature was ear-

²⁵ lier observed in the seasonal variability of surface air abundances of other trace gases as well (Elansky et al., 2009) and can be most probably connected to a long-wave trough/ridge system commonly persisted over the continental areas of the North Eurasia including the periods of the TROICA experiments.

We compared ²²²Rn concentrations from the TROICA experiments with the Map of radon risk of Russia (Maximovsky et. al., 1996) compiled on the basis of the generalized analytical data on radiogeochemistry, radiometric investigation and other materials obtained from long-term researches of different Russian scientific organizations. The authors of the map divided Russian territory into geographical areas according to the degree of radon risk, as shown in Fig. 2. According to the TROICA data, radon concentrations in the areas of elevated radon risk shown on the map are commonly lower than that measured in the dangerous areas (see Table 4 and Fig. 2). The observed high ²²²Rn concentrations between Magdagachi and Arkhara (Fig. 2) cover both the radon

¹⁰ dangerous area and the "radon Clarke" area (the area where ²²²Rn concentration is equal or below its average in the earth's crust) on the map of radon risk immediately to the west, which is likely to be due to the prevailing effect of the local observation times as discussed above. Generally, ²²²Rn concentrations measured in the TROICA experiments (Fig. 2) are found to be in a good agreement with the earlier studies on the radon risk areas (Maximovsky et. al., 1996) as well as spatial locations of tectonic faults, which confirms our general notion about the reliability of the obtained ²²²Rn

3.1.2 Effect of the atmospheric stability on surface ²²²Rn concentration

dataset and its applicability to invert radon soil fluxes at a regional basis.

In TROICA experiments, the highest ²²²Rn concentrations (up to 75 Bqm⁻³) were commonly observed during the nights with strong and prolonged surface temperature inversions. Figure 3 shows the mean diurnal cycles of temperature inversion height and ²²²Rn concentration in different seasons. The surface temperature inversions existed usually from 18:00–19:00 to 06:00–08:00 LT and from 17:00 to 09:00–10:00 LT in the warm and cold seasons, correspondingly (Fig. 3a). The highest radon concentrations, up to 30–35 Bqm⁻³ were observed in the early morning (04:00–06:00 LT), being a result of night-time accumulation below temperature inversion, prior to the beginning of inversion collapse and subsequent decrease in ²²²Rn concentration as a factor of 3

to 5 on average owing to convective mixing. Contrary, in the absence of temperature inversions there were no night-time near-surface radon accumulation episodes, so its mean concentration did not change significantly during the day and for all seasons was 1.5-3.5 Bqm⁻³ (Fig. 3b with the caption "no inversions").

- Table 5 presents diurnal and daytime mean ²²²Rn concentrations in different seasons according to the TROICA measurements. The measurements performed under day-time inversion conditions were excluded from the present data to suppress the strong effect of the associated radon accumulation on the derived statistics, which resulted in daily mean ²²²Rn concentrations being 1.5–2 times lower on average compared to the diurnal ones in all seasons. The highest diurnal and daytime mean ²²²Rn concentrations were observed in autumn owing to the strongest and most prolonged temperature
 - inversions observed in this period (see Tables 2 and 4), which confirms significant influence of vertical exchange rates on surface ²²²Rn variations at a seasonal scale.

3.1.3 Seasonal soil thawing effect on surface ²²²Rn concentration

- ¹⁵ Along with vertical exchange due to the turbulent mixing, the properties of the soil is the other key factor affecting ²²²Rn near-surface abundance. The soil covered with snow or ice accumulates ²²²Rn and makes for its subsequent enhanced emission into the atmosphere during the first hours after snow melting (Miklyaev and Petrova, 2007). Commonly, the diffusion equilibrium between the soil and the surface atmospheric layer
- is reached in several hours after which the radon flux attains its steady-state value but sometimes this process can last up to several days. Glover (2006) and Glover and Blouin (2007) note that the permafrost is a barrier to ²²²Rn exhalation resulting in its 80–90 % decrease in ambient air and 10–15 times increase in its abundance in the soil. Since the major part of the Trans-Siberian Railway in East Siberia goes through the permafrost area, the influence of seasonal soil thawing should be accounted for
 - when studying seasonal aspects of the ²²²Rn surface flux variations.

The thawing depth was calculated in the region $52-55^{\circ}$ N, $105-130^{\circ}$ E at the time periods of the TROICA campaigns using the scheme of the heat and moisture transfer

in the soil (Arzhanov et al., 2008) in the ECHAM5/MPI-OM model (SRES A1B scenario). The resulting effect of the thawing depth on the near-surface radon abundance is shown in Fig. 4. The model-predicted thawing depth is approximately 1.24, 1.40 and 1.85 m for the Summer TROICA-5,7,11, Summer TROICA-12, and October TROICA-

- ⁵ 9 campaigns, correspondingly. One can see from the figure, that near-surface radon concentrations increased more than 3 times (according to the daytime radon values) in this region from summer 1999 (TROICA-5) to summer 2008 (TROICA-12) reaching the highest value in autumn 2005 (TROICA-9), with the persistent increase in thawing depth being observed. To exclude the effect of the night-time radon accumulation events, we divided nighttime and daytime data (see Fig. 4). Yet, the impact of the thaw-
- events, we divided nightlime and daytime data (see Fig. 4). Yet, the impact of the thawing depth is seen distinctly for both the night and daytime ²²²Rn concentrations; hence, the observed increase in the seasonal thawing depth during the warm period can explain higher ²²²Rn concentrations in autumn comparing with other seasons.

3.2 Nocturnal ²²²Rn soil flux calculation

- ¹⁵ We use the measured ²²²Rn concentrations in nocturnal accumulation events to estimate associated radon surface fluxes using the numerical approach discussed in Sect. 2.3. An example of ²²²Rn flux calculation at the route part 1256–1076 km from Moscow 10 July 2001, 02:54–06:10 LT (TROICA-7) is presented in Fig. 6. The observed region is located in a flat area with a typical elevation from 150–200 m a.s.l. The
- ²⁰ figure shows the time series of the atmospheric temperatures at different heights a.g.l., the measured radon concentration, and the calculated total radon content varying approximately linear with time. Invoking Eq. (6), the regression slope of M on t gives the mean radon emission rate, which is an approximate estimate for Q.

In a particular nighttime accumulation event the atmospheric transport conditions within the surface inversion layer vary both with time and altitude with the resulting effect on radon accumulation rate hardly to be quantified at a rational basis taking into account the lack of observational data on the full set of parameters governing the turbulent mixing regime. In present simulations the major factor affecting the radon

vertical distribution, and hence accumulation rate, is the vertical mixing rate profile controlled by the parameter $K(z_1)$. Since the exact value of the temperature gradient in a particular inversion event changes within a range of G and F stability classes, two sets of calculations were performed by setting $K(z_1)$ equal to 10 and 100 cm² s⁻¹ according to Eq. (7) to obtain Q(G) and Q(F) values for radon accumulation rates for G and F stability classes, respectively. Accordingly, for each accumulation event *i* we define

$$\overline{Q}_i = (Q_{\rm G} + Q_{\rm F})/2, \qquad \sigma_{Q,i} = |Q_{\rm G} - Q_{\rm F}|/2$$

as the best estimates for Q and an estimate error for \overline{Q}_i , correspondingly. The relative estimated error is commonly a few tens of percent and reaches as much as 50 % in some events. To make our estimates be representative at a regional scale, we calculate the expected means and associated errors as

$$\overline{Q}_{\text{reg}} = \sum_{i} g_{i} \cdot \overline{Q}_{i} / \sum_{i} g_{i}$$

15

and

$$\sigma_{Q,\mathrm{reg}} = \left(\sum_{i} g_{i}\right)^{-2},$$

correspondingly, where $g_i = \sigma_{Q,i}^{-1}$, and summation by *i* is performed over all accumulation events observed during the TROICA expeditions within a particular region defined according to Fig. 2. The calculated weighted-mean region averaged radon soil fluxes are summarized in Fig. 6 and Table 6. One can see that the derived ²²²Rn soil flux varies significantly over Russia, from 0.01 to 0.15 Bqm⁻² s⁻¹, depending on the geological features as well as the seasons. In the mountain regions of Central and Eastern

Siberia, the Far East, radon soil emissions are 1.5–3 times higher than in the plains (Table 6), with the maximum values being found in the regions with tectonic faults.

(8)

(9)

(10)

We compared ²²²Rn fluxes calculated from the TROICA experiments with the²²²Rn flux maps derived from the data modeling. Schery and Wasiolek (1998) proposed a global ²²²Rn flux map based on a porous media transport theory and calibrated them with experimental ²²²Rn flux data from Australia and Hawaii. The map gives 222 Rn flux for the Russian latitudes to be about 0.02–0.03 Bg m⁻² s⁻¹ but has a large unsertainty becouse of the lack of global data on soil moisture and ²²⁶Ra content. Hirao et al. (2010) improved the performance of the model complimented by the soil and ²²⁶Ra content and estimated the global ²²²Rn flux density distribution in the period of 1979–2007. These estimations give ²²²Rn flux for Russian regions to be up to 0.03 Bqm⁻²s⁻¹. The ²²²Rn flux estimations by Schery and Wasiolek (1998) and Hi-10 rao et al. (2010) are in the range of our estimations but as a rule 5-6 times lower then our ones. The Russian ²²²Rn flux map (http://radon.unibas.ch) generated by the scientific group from the University of Basel, Switzerland (Szegvary et al., 2007) and based on a gamma-dose rate map of Russia derived from aeroradiometric measurements (Vysokoostrovskava et al., 1995) shows the highest radon fluxes in Central and 15 Eastern Siberia, in the Far East that corresponds to our estimations. But according to the map, 222 Rn flux varies over Russia from 0.2 to 1.2 atom cm⁻² s⁻¹ (from 0.004 to $0.02 \text{ Bgm}^{-2} \text{ s}^{-1}$) which is 3–7 times lower than the range we inferred.

Our estimations are in a good agreement with the direct ²²²Rn flux measurements reported for some Russian regions. According to the Perm CGMS radiation monitoring, in 2006 the mean ²²²Rn flux was 0.04 ± 0.01 Bqm⁻²s⁻¹ in the Perm region (http://wp.permecology.ru/report/report2006/17.html) which corresponds to 0.04 ± 0.02 Bqm⁻²s⁻¹ on average from the TROICA experiments. ²²²Rn soil fluxes in Krasnoyarsk city and its suburb Minusinsk reported to vary from 0.014 to 0.2 Bqm⁻²s⁻¹ and from 0.009 to 0.6 Bqm⁻²s⁻¹, correspondingly (Voevodin and Kurguz, 2012; Sobyanina et al., 2012) being 0.04 Bqm⁻²s⁻¹ on average. These measurements are in a good agreement with our estimations (0.04 ± 0.03). Bolshakov and Seyvald (2005) measured ²²²Rn flux in Tomsk from September to Oktober 2004 to be from 0.02 to 0.7 Bqm⁻²s⁻¹. Our estimations give ²²²Rn flux in this region in summer months to

be 0.04 ± 0.01 Bqm⁻² s⁻¹. Milin et al. (1967) reported the mean ²²²Rn flux from summer measurements in Kirov to be about 0.02 Bqm⁻² s⁻¹ which is in a good agreement with our calculations (0.02 ± 0.01 Bqm⁻² s⁻¹). Miklyaev and Petrova (2006) measured ²²²Rn flux at different sites in Moscow and reported that ²²²Rn flux varies from 0.01 to 0.07 Bqm⁻² s⁻¹ (0.02±0.01 on average) in the regions with clay soils. ²²²Rn fluxes calculated from the observations on the mobile laboratory around Moscow (TROICA-10, 4–7 October 2006) at two observational parts in the east of the Moscow region, where the clay soils are spread, were 0.01±0.008 and 0.02±0.007 Bqm⁻² s⁻¹. On the whole, ²²²Rn soil flux over Russia can vary from 0.01 to 0.07 Bqm⁻² s⁻¹ (Milin et al., 1967; Kirichenko 1970) in agreement with our calculations.

· · ·

4 Conclusions

25

The most significant variations in surface radon concentrations along the Trans-Siberian Railway are caused by the diurnal change in the ABL stability. The highest ²²²Rn concentrations (up to 75 Bq m⁻³) were usually observed during night-time strong and prolonged temperature inversions in the mountain regions of Russia (Central and

¹⁵ and proonged temperature inversions in the mountain regions of Russia (Central and Eastern Siberia, the Far East). Due to weak vertical mixing in the stable atmosphere,
 ²²²Rn accumulates in ASL and its concentrations increased several times compared to its values during unstable atmospheric conditions. If we know the rate of ²²²Rn accumulation in the night-time stable ABL and the height of its mixing layer, we can estimate nocturnal radon soil flux.

The calculated nocturnal ²²²Rn soil flux over Russia varies from 0.01 to 0.15 Bqm⁻²s⁻¹, with the highest values for the mountain regions of Central Siberia and the Far East. Generally, ²²²Rn concentration and flux over Russia peak in autumn and bottom out in spring. We suppose that there is a contribution to high radon concentrations and fluxes in the permafrost regions in autumn by seasonal soil thawing.

It is possible that air advection from local anthropogenic radon sources has some effect on surface radon concentration variations in stable atmospheric conditions but such requires a detailed investigation.

²²²Rn fluxes estimated from the experiments on the mobile laboratory are in agree ⁵ ment with the data reported for Russian regions in literature. This information is beyond doubt of importance to investigate and document in detail the trends in fluxes of N₂O, CO₂, and CH₄ during the coming decades of global warming in the mid-Anthropocene (http://www.fu-berlin.de/sites/einsteinlectures/el_2008_1_crutzen/index.html).

Acknowledgements. The authors thank P. Crutzen, H. Paretzke, G. S. Golitsin, O. V. Lavrova,
 A. I. Skorokhod for their support, active participation in the organization and/or carrying out of the TROICA experiments, I. B. Belikov and R. A. Shumsky for providing the experimental data, M. M. Arzhanov for the calculation of the seasonal thawing depth under permafrost conditions in the periods of the TROICA experiments, A. N. Safronov for his help with ArcView GIS data processing. The work is supported by the Russian Basic Research Foundation (projects No. 13-05-00461, 10-05-00272) and the 4th RAS Presidium Program.

References

- Arzhanov, M. M., Eliseev, A. V., Demchenko, P. F., Mokhov, I. I., and Khon, V. Ch.: Simulation, of thermal and hydrological regimes of Siberian river watersheds under permafrost conditions from reanalysis data, Izvestiya, Atmos. Ocean. Phys., 44, 83–89, 2008.
- Beck, H. and Gogolak, C.: Time-dependent calculations of the vertical distribution of ²²²Rn and its decay products in the atmosphere, J. Geophys. Res., 84, 9C0385, 3139–3148, 1979.
 - Berezina, E. V. and Elansky, N. F.: ²²²Rn concentrations in the atmospheric surface layer over continental Russia from observations in TROICA experiments, Izvestiya, Atmos. Ocean. Phys., 45, 757–769, 2009.
- ²⁵ Bezuglaya, E. Yu.: Climate Characteristics of Species Spreading Conditions in the Atmosphere, Gidrometeoizdat, Leningrad, 326 pp., 1983.
 - Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V., Monfray, P., O'Doherty, S., Spain, T., and Jennings, S.: European greenhouse gas emissions estimated from contin-

uous atmospheric measurements and radon-222 at Mace Head, J. Geophys. Res., 105, 1351–1366, 2000.

- Bolshakov, O. S., Seyvald, N. A.: Research of daily dynamics of radon flux density from the Earth's surface, in: Problems of Geology and Mineral Resources Development, Proceedings
- of M.A. Usov Ninth. International Symposium, Tomsk, TPU, 595–597, 2005.
 - Cohen, L. D., Barr, S., Krablin, R., and Newstein, H.: Steady-state vertical turbulent diffusion of radon, J. Geophys. Res., 77, 2654–2668, 1972.
 - Conen, F. and Robertson, L. B.: Latitudinal distribution of Rn-222 flux from continents, Tellus B, 54, 127–133, 2002.
- ¹⁰ Corazza, M., Bergamaschi, P., Vermeulen, A. T., Aalto, T., Haszpra, L., Meinhardt, F., O'Doherty, S., Thompson, R., Moncrieff, J., Popa, E., Steinbacher, M., Jordan, A., Dlugokencky, E., Brühl, C., Krol, M., and Dentener, F.: Inverse modelling of European N₂O emissions: assimilating observations from different networks, Atmos. Chem. Phys., 11, 2381– 2398, doi:10.5194/acp-11-2381-2011, 2011.
- ¹⁵ Dörr, H., Kromer, B., Levin, I., Münnich, K., and Volpp, H.: CO₂ and radon as tracers for atmospheric transport, J. Geophys. Res., 88, 1309–1313, 1983.
 - Druilhet, A., Guedalia, D., Fontan, J., and Laurant, J.: Study of radon 220 emanation deduced from measurement of vertical profiles in the atmosphere, J. Geophys. Res., 77, 6508–6514, 1972.
- ²⁰ Dueñas, C., Fernandez, M. C., Cañete, S., Carretero, J., and Liger, E.: ²²²Rn concentrations, natural flow rate and the radiation exposure level in the Nerja Cave, Atmos. Environ., 33, 501–510, 1999.
 - Elansky, N. F., Belikov, I. B., Berezina, E. V., Brenninkmeijer, C. A. M., Buklikova, N. N., Crutzen, P. J., Elansky, S. N., Elkins, J. V., Elokhov, A. S., Golitsyn, G. S., Gorchakov, G. I., Granberg,
- I. G., Grisenko, A. M., Holzinger, R., Hurst, D. F., Igaev, A. I., Kozlova, A. A., Kopeikin, V. M., Kuokka, S., Lavrova, O. V., Lisitsyna, L. V., Moeseenko, K. B., Oberlander, E. A., Obvintsev, Yu. I., Obvintseva, L. A., Pankratova, N. V., Postylyakov, O. V., Putz, E., Romashkin, P. A., Safronov, A. N., Shenfeld, K. P., Skorokhod, A. I., Shumsky, R. A., Tarasova, O. A., Turnbull, J. C., Vartiainen, E., Weissflog, L., and Zhernikov, K. V.: Atmospheric Composition Observations over Northern Eurasia Using the Mobile Laboratory: TROICA Experiment, edited by:
- vations over Northern Eurasia Using the Mobile Laboratory: TROICA Experiment, edited by Elansky, N. F., Agrospas, Moscow, Russia, 72 pp., 2009.
 - Gaudry, A., Polian, G., Ardouin, B., and Lambert, G.: Radon-calibrated emissions of CO₂ from South Africa, Tellus B, 42, 9–19, 1990.

Glover, P. W. J.: Increased domestic radon exposure caused by permafrost thawing due to global climate change, EGU General Assembly, Vienna, Austria, 2–7 April, EGU06-A-01439, 2006.

Glover, P. W. J. and Blouin, M.: Modelling increased soil radon emanation caused by instanta-

- neous and gradual permafrost thawing due to global climate warming, EGU General Assembly, Vienna, Austria, 15–20 April, EGU2007-A-07657, 2007.
 - Hirao, S., Yamazawa, H., and Moriizumi, J.: Estimation of the global ²²²Rn flux density from the Earth's surface, Jpn. J. Health Phys., 45, 161–171, 2010.

Hirsch, A. I.: On using radon-222 and CO₂ to calculate regional-scale CO₂ fluxes, Atmos. Chem. Phys., 7, 3737–3747, doi:10.5194/acp-7-3737-2007, 2007.

Hosler, C. R.: Meteorological effects on atmospheric concentrations of Radon (Rn-222), RaB (Pb-214), and RaC (Bi-214) near the ground, Mon. Weather Rev., 94, 89–99, 1966.

10

20

30

Jacobi, W. and Andre, K.: The vertical distribution of radon-222, radon-220 and their decay products in the atmosphere, J. Geophys. Res., 68, 3799–3814, 1963.

- ¹⁵ Kadygrov, E. N. and Pick, D. R.: The potential for temperature retrieval from an angular scanning single-channel microwave radiometer and some comparison with in situ observations, Meteorol. Appl., 5, 393–404, 1998.
 - Kataoka, T., Yunoki, E., Shimizu, M., Mori, T., Tsukamoto, O., Ohashi, Y., Sahashi, K., Maitani, T., Miyashita, K., Fujikawa, Y., and Kudo, A.: Diurnal variation in radon concentration and mixing-layer depths, Bound.-Lay. Meteorol., 89, 225–250, 1998.
 - Kirichenko, L. V.: Radon exhalation from vast areas according to vertical distribution of its shortlived decay products, J. Geophys. Res., 75, 3639–3649, 1970.
 - Lee, H. N. and Larsen, R. J.: Vertical diffusion in the lower atmosphere using aircraft measurements of radon-222, J. Appl. Meteorol., 36, 1262–1270, 1997.
- Levin, I., Glatzer-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M., and Worthy, D. E.: Verification of German methane emission inventories and their recent changes based on atmospheric observations, J. Geophys. Res., 104, 3447–3456, 1999.
 - Map of natural gamma radiation doses of Russia. 1:10000000 scale, Explanatory notes, Vysokoostrovskaya, E. B., Danilov, V. S., Krasnov, A. I., Reshetov, V. V., M.- SPb.: Roscomnedra, 1996.
 - Map of radon risk of Russia. 1:10000000 scale, Explanatory notes, Maximovsky, V. A., Smyslov, A. A., and Kharlamov, M. G., M.-SPb. (Roscomnedra, VSEGEI, Goscomvus, SPbGGI), 1996.

- Martz, D. E., Holleman, D. F., McCurdy, D. E., and Schiager, K.: Analysis of atmospheric concentrations of RaA, RaB and RaC by alpha spectroscopy, Health Phys., 17, 131–138, 1969.
- Messager, C., Schmidt, M., Ramonet, M., Bousquet, P., Simmonds, P., Manning, A., Kazan, V., Spain, G., Jennings, S. G., and Ciais, P.: Ten years of CO_2 , CH_4 , CO and N_2O fluxes over
- Western Europe inferred from atmospheric measurements at Mace Head, Ireland, Atmos. 5 Chem. Phys. Discuss., 8, 1191–1237, doi:10.5194/acpd-8-1191-2008, 2008.
 - Miklyaev, P. S. and Petrova, T. B.: Mechanisms of radon flux formation from the surface of soils and approached to radon hazard evaluation in areas of residential development, ANRI, 2, 2–16, 2007.
- Milin, V. B., Malakhov, S. G., Zorina, K. I., and Sisigina, T. I.: Radon Concentration and Vertical 10 Turbulent Mixing in the Lowest Atmospheric Layer, Foreign technology div Wright-Patterson AFB, Ohio, 9 February, AD0679719, 1968.
 - Moriizumi, J., Nagamine, K., Iida, T., Ikebe, Y.: Estimation of areal flex of atmospheric Methane in an urban area of Nacova, Japan, inferred from atmospheric radon-222 data, Atmos, Envi-
- ron., 30, 1543-1549, 1996. 15

25

Moses, H., Stehney, A. F., and Lucas, H. F.: The effect of meteorological variables upon the vertical and temporal distribution of atmospheric radon, J. Geophya. Rm., 66, 1223–1238, 1960.

Oikawa, S., Kanno, N., Sanada, T., Ohashi, N., Uesugi, M., Sato, K., Abukawa, J., and

Higuchi, H.: A nationwide survey of outdoor radon concentration in Japan, J. Environ. Ra-20 dioactiv., 65, 203–213, 2003.

Pasquill, F.: The estimation of the dispersion of windborne material, Meteorol. Mag., 90, 33-49, 1961.

Prospero, J. M., Bonatti, E., Schubert, E., and Carlson, T. N.: Dust in the Caribbean atmosphere traced to an African dust storm, Earth Planet. Sc. Lett., 9, 287-293, 1970.

- Rasch, P. J., Feichter, J., Law, K., Mahowald, N., Penner, J., Benkovitz, C., Genthon, C., Giannakopoulos, C., Kasibhatla, P., Koch, D., Levy, H., Maki, T., Prather, M., Roberts, D. L., Roelofs, G. J., Stevenson, D., Stockwell, Z., Taguchi, S., Kritz, M., Chipperfield, M., Baldocchi, D., McMurry, P., Barrie, L., Balkanski, Y., Chatfield, R., Kjellstrom, E., Lawrence, M., Lee,
- H. N., Lelieveld, J., Noone, K. J., Seinfeld, J., Stenchikov, G., Schwartz, S., Walcek, C., and 30 Williamson, D. L.: A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995, Tellus B, 52, 1025–1056, 2000.

Schery, S. D. and Wasiolek, M. A.: Modeling radon flux from the earth's surface, in: Radon and Thoron in the Human Environment, edited by: Katase, A. and Shimo, S., World Scientific, Singapore, 207–217, 2008.

Schmidt, M., Graul, R., Sartorius, H., and Levin, I.: Carbon dioxide and methane in continental

- Europe: a climatology, and 222 radon-based emission estimates, Tellus, 48, 457–473, 1996. Servant, J.: Temporal and spatial variations of the concentration of the short-lived decay products of radon in the lower atmosphere, Tellus, 18, 663–670, 1966.
 - Sobyanina, E. V., Kovalenko, V. V., Maltsev, U. M., and Chechetkin, V. A.: Radon at the perspective development territory of the Severni microraion in Minusinsk, in: Proceedings of the
- International Scientific Conference "Radioecology of the XXI century", Krasnoyarsk, 14–16 May 2012, SFU, 165–175, 2012.
 - Somashekarappa, H. M., Narayana, Y., Radhakrishna, A. P., Siddappa, K., Joshi, V. B., Kholekar, R. V., and Bhagwat, A. M.: Atmospheric radon levels and its emanation rate in the environment of Kaiga, Radiat. Meas., 26, 35–41, 1996.
- ¹⁵ Stockburger, H. and Sittkus, A.: Unmittelbare Messung der naturlichen Radioaktivitat der atmospharischen Luft, Z. Naturforsch., 21a, 1128–1132, 1966.
 - Szegvary, T., Leuenberger, M. C., and Conen, F.: Predicting terrestrial ²²²Rn flux using gamma dose rate as a proxy, Atmos. Chem. Phys., 7, 2789–2795, doi:10.5194/acp-7-2789-2007, 2007.
- ²⁰ Szegvary, T., Conen, F., and Ciais, P.: European ²²²Rn inventory for applied atmospheric studies, Atmos. Environ., 43, 1536–1539, 2009.
 - Tarasov, I. V.: Cement concretes and mortars with low natural radioactivity and radon permeability, MS thesis, Sib. Federal. Univ., Krasnoyarsk, 21 pp., 2008.

Taguchi, S., Law, R. M., Rödenbeck, C., Patra, P. K., Maksyutov, S., Zahorowski, W., Sarto-

- rius, H., and Levin, I.: TransCom continuous experiment: comparison of ²²²Rn transport at hourly time scales at three stations in Germany, Atmos. Chem. Phys., 11, 10071–10084, doi:10.5194/acp-11-10071-2011, 2011.
 - Turekian, K. K., Nozaki, Y., and Benninger, L. K.: The flux of radon and thoron from Australian Geochemistry of atmospheric radon and radon products, Annu. Rev. Earth Pl. Sc., 5, 227–255, 1977.

30

Voevodin, V. A. and Kurguz, S. A.: Radon flux density variation from the soil in the measurement site of Krasnoyarsk, in: Proceedings of the International Scientific Conference "Radioecology of the XXI century", Krasnoyarsk, 14–16 May 2012, SFU, 108–114, 2012.

Wilkniss, P. E., Larson, R. E., Bressan, P. J., and Steranka, J.: Atmospheric radon and continental dust near the automatic and their correlation with air mass trajectories, J. Appl. Meteorol., 13, 512–520, 1974.

Yakovleva, V. C.: The radon flux density from the Earth's surface as an indicator of a seismic

activity, in: Proceedings of 7th International Conference on Gas Geochemistry, Freiberg, Germany, 22–26 September 2003, 28–30, 2003.

Yver, C., Schmidt, M., Bousquet, P., Zahorowski, W., and Ramonet, M.: Estimation of the molecular hydrogen soil uptake and traffic emissions at a suburban site near Paris through hydrogen, carbon monoxide, and radon-222 semicontinuous measurements, J. Geophys. Res.,

10 114, D18304, doi:10.1029/2009JD012122, 2009.

Table 1. ⊺	ROICA	experiments:	dates	and	routes.
------------	-------	--------------	-------	-----	---------

Experiment	Season	Time period	Route
TROICA-5	summer	26 Jun 99–2 Jul 99	N. Novgorod–Khabarovsk
		3 Jul 99–13 Jul 99	Khabarovsk–Moscow
TROICA-7	summer	27 Jun 01–3 Jul 01	Moscow–Khabarovsk
		4 Jul 01–10 Jul 01	Khabarovsk–Moscow
TROICA-8	spring	19 Mar 04–25 Mar 04	N. Novgorod–Khabarovsk
		26 Mar 04–1 Apr 04	Khabarovsk–Moscow
TROICA-9	autumn	4 Oct 05–10 Oct 05	Moscow–Vladivostok
		11 Oct 05–18 Oct 05	Vladivostok–Moscow
TROICA-11	summer	22 Jul 07–29 Jul 07	Moscow–Vladivostok
		30 Jul 07–5 Aug 07	Vladivostok–Moscow
TROICA-12	summer	21 Jul 08–28 Jul 08	Moscow–Vladivostok
		29 Jul 08–4 Aug 08	Vladivostok-Moscow

Table 2. Surface temperature inversion characteristics averaged in different seasons.

		Spring (TROICA-8)	Summer (TROICA- 5,7,11,12)	Autumn (TROICA-9)
	average	220 ± 145	210 ± 119	198±101
БE		(± standard		
ersio oth,		deviation)		
dep dep	minimum	50	50	50
	maximum	500	600	600
ູ່ວ	average	4.5 ± 3.7	2.9 ± 2.3	5.1 ± 3.4
nsit), 4 m),		(± standard		
intei ×-7		deviation)		
sion = T _{ma}	minimum	0.2	0.2	0.2
Inver: (ΔT =	maximum	16.9	13.0	14.9
	average	300 ± 210	245 ± 170	365 ± 300
nin		(± standard		
ion on, I		deviation)		
vers ırati	minimum	45	40	60
dr 🖵	maximum	860	710	990
E	average	1.9±0.9	1.3±0.6	2.5 ± 1.3
100	-	(± standard		
°C/		deviation)		
oera ient,	minimum	0.2	0.2	0.2
emp Iradi	maximum	6.6	10.7	8.9
гo				

Discussion Paper **ACPD** 13, 14545–14579, 2013 **Estimation of** nocturnal ²²²Rn soil fluxes over Russia **Discussion** Paper E. V. Berezina et al. Title Page Introduction Abstract Conclusions References **Discussion** Paper Tables Figures 4 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion $(\mathbf{\hat{n}})$ (cc)

14569

Table 3. Statistics on spatially averaged 1 h diurnal and daytime ²²²Rn concentrations for different Russian regions in different seasons (in Bqm⁻³). The numbers of the regions: I – Moscow–Perm (0–1380 km from Moscow); II – Perm–Ekaterinburg (1380–1904 km from Moscow); III – Ekaterinburg–Novosibirsk (1904–3283 km from Moscow); IV – Novosibirsk–Irkutsk (3283–5136 km from Moscow); V – Irkutsk–Belogorsk (5136–7818 km from Moscow); VI – Belogorsk–Vladivostok (7818–9242 km from Moscow).

No.	Region	Diu	Diurnal		Daytime		
		mean	st.dev	mean	st.dev	min	max
			Spr	ing			
I	European territory	2.0	0.9	1.9	1.3	0.4	3.9
П	Ural	4.9	2.7	5.0	3.9	2.6	14.3
III	Western Siberia	6.3	2.5	5.3	1.9	3.2	8.8
IV	Central Siberia	6.7	4.3	6.0	4.3	1.9	25.5
V	Eastern Siberia	8.0	6.5	4.4	3.8	0.3	16.9
VI	The Far East	17.6	14.8	7.0	1.7	4.5	10.5
			Sum	mer			
I	European territory	4.0	4.5	2.1	3.5	0.1	4.0
II	Ural	6.9	7.1	4.7	1.1	0.5	6.9
	Western Siberia	3.7	3.3	2.9	2.6	0.6	3.7
IV	Central Siberia	9.5	8.5	6.8	5.2	1.0	9.5
V	Eastern Siberia	7.5	6.6	4.6	4.1	0.3	7.5
VI	The Far East	8.8	7.0	7.3	5.8	0.4	8.8
			Autu	umn			
I	European territory	12.8	7.0	13.3	6.4	7.7	12.8
II	Ural	22.6	13.4	7.0	2.2	4.6	22.6
111	Western Siberia	22.3	10.9	17.9	10.6	6.9	22.3
IV	Central Siberia	11.3	10.2	7.8	6.6	0.6	11.3
V	Eastern Siberia	9.6	10.2	6.3	6.3	1.0	9.6
VI	The Far East	12.4	7.2	12.4	7.0	6.7	12.4

Table 4. Surface temperature inversion characteristics averaged for the Russian regions from the summer and autumn experiments. The numbers of the regions: I – Moscow– Perm (0–1380 km from Moscow); II – Perm–Ekaterinburg (1380–1904 km from Moscow); III – Ekaterinburg–Novosibirsk (1904–3283 km from Moscow); IV – Novosibirsk–Irkutsk (3283–5136 km from Moscow); V – Irkutsk–Belogorsk (5136–7818 km from Moscow); VI – Belogorsk–Vladivostok (7818–9242 km from Moscow).

No.	Region	Inversion	depth	pth, m Inversion intensity $(\Delta T = T_{max} - T_{4m}), ^{\circ}C$			Inversion duration, min			
		Average (± standard deviation)	minimum	maximum	Average (± standard deviation)	minimum	maximum	Average (± standard deviation)	minimum	maximum
					S	ummei	r			
Ι	European territory	220 ± 120	50	600	2.7 ± 1.9	0.2	11.2	265 ± 150	71	500
II	Ural	150 ± 80	50	350	1.9 ± 1.3	0.2	5.6	160 ± 90	71	320
III	Western Siberia	200 ± 90	50	500	2.9 ± 1.9	0.2	9.4	275 ± 105	125	382
IV	Central Siberia	225 ± 130	50	600	3.3 ± 2.7	0.2	11.9	225 ± 170	55	608
V	Eastern Siberia	200 ± 130	50	600	2.7 ± 2.2	0.2	14.5	200 ± 170	40	672
VI	The Far East	220 ± 115	50	600	3.1 ± 2.4	0.2 utumn	13.0	385 ± 215	105	711
Ι	European territory	128 ± 91	50	350	1.8 ± 1.5	0.2	6.7	291 ± 320	100	771
Ш	Ural	215 ± 89	50	350	4.8 ± 2.2	0.2	10.3	_	_	465
III	Western Siberia	265 ± 92	50	600	8.0±3.1	0.2	14.9	435 ± 351	100	800
IV	Central Siberia	179 ± 91	50	350	4.7 ± 3.0	0.2	13.8	375 ± 382	105	645
V	Eastern Siberia	225 ± 114	50	600	5.7 ± 3.3	0.2	16.0	312 ± 331	60	991
VI	The Far East	185 ± 82	50	350	4.1 ± 2.1	0.2	13.6	458 ± 341	70	861

		Average (± standard deviation)	Mode	Median	Maximum	Minimum	Lower quartile (25 %)	Upper quartile (75 %)
ner	diurnal	7.2 ± 7.8	3.1	4.8	70.7	< 0.1	2.3	9.3
Sumr	daytime	4.5 ± 4.1	3.0	3.2	21.2	< 0.1	1.7	6.2
um	diurnal	12.6 ± 10.9	5.2	9.3	49.4	0.2	4.2	17.5
Autu	daytime	6.1 ± 4.7	2.2	5.1	29.6	0.2	2.2	8.9
ring	diurnal	6.7 ± 6.7	3.6	4.7	74.8	0.2	3.0	7.8
Spi	daytime	3.7 ± 2.1	3.6	3.3	13.4	0.3	2.3	4.6

Table 5. Seasonal variations of diurnal and daytime (no temperature inversions) mean ²²²Rn concentrations.

Table 6. Weighted mean ²²²Rn fluxes (calculated using the maximum-likelihood method) in Russian regions in different seasons. The numbers of the regions (km from Moscow): I – Moscow–Perm (0–1380 km); II – Perm–Ekaterinburg (1380–1904 km); III – Ekaterinburg–Novosibirsk (1904–3283 km); IV – Novosibirsk–Irkutsk (3283–5136 km); V – Irkutsk–Belogorsk (5136–7818 km); VI – Belogorsk–Vladivostok (7818–9242 km).

No.	Region	²²² Rn flux	N (number of						
		(weighted mean	10 min						
		error), Bqm ⁻² s ⁻¹	data points)						
	Spring								
I I	European territory	-	_						
II	Ural	0.05 (0.04)	26						
III	Western Siberia	0.03 (0.02)	17						
IV	Central Siberia	0.07 (0.04)	26						
V	Eastern Siberia	0.06 (0.03)	28						
VI	The Far East	0.06 (0.04)	26						
		Summer							
I	European territory	0.03 (0.01)	101						
II	Ural	0.05 (0.02)	19						
	Western Siberia	0.04 (0.01)	154						
IV	Central Siberia	0.05 (0.01)	87						
V	Eastern Siberia	0.06 (0.01)	193						
VI	The Far East	0.06 (0.02)	58						
		Autumn							
I I	European territory	0.06 (0.03)	27						
II	Ural	0.09 (0.05)	52						
III	Western Siberia	0.09 (0.05)	22						
IV	Central Siberia	0.04 (0.02)	80						
V	Eastern Siberia	0.04 (0.02)	5						
VI	The Far East	0.07 (0.03)	85						

Fig. 1. Map of radon risk of Russia and the TROICA experiments route along the Trans-Siberian Railway from Moscow to Vladivostok.

Fig. 2. Spatial distribution of surface ²²²Rn concentration (10 min average values) and altitude a.s.l. from Moscow to Vladivostok in TROICA experiments. The radon risk areas corresponding to the Map of radon risk of Russia are presented as colored rectangles. Percentiles are presented for 10 min radon values for each 100 km route part (only the 50th percentile values are presented for spring and autumn data because of a limited dataset for calculations).

Fig. 3. The mean diurnal cycles of temperature inversion top (a) and 222 Rn concentration (b) from TROICA experiments.

Fig. 4. Mean ²²²Rn concentrations obtained from the TROICA data and the soil thawing depth calculated for the period of the experiments in the region 52–55° N, 105–130° E using ECHAM5/MPI-OM model (SRES A1B scenario).

Discussion Paper

